(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
quot(0, s(y), s(z)) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(quot(x, s(z), s(z)))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
quot(0', s(y), s(z)) → 0'
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0', s(z)) → s(quot(x, s(z), s(z)))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
quot(0', s(y), s(z)) → 0'
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0', s(z)) → s(quot(x, s(z), s(z)))
Types:
quot :: 0':s → 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
quot
(6) Obligation:
Innermost TRS:
Rules:
quot(
0',
s(
y),
s(
z)) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
quot(
x,
s(
z),
s(
z)))
Types:
quot :: 0':s → 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
quot
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
quot(
gen_0':s2_0(
n4_0),
gen_0':s2_0(
+(
1,
n4_0)),
gen_0':s2_0(
1)) →
gen_0':s2_0(
0), rt ∈ Ω(1 + n4
0)
Induction Base:
quot(gen_0':s2_0(0), gen_0':s2_0(+(1, 0)), gen_0':s2_0(1)) →RΩ(1)
0'
Induction Step:
quot(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(1, +(n4_0, 1))), gen_0':s2_0(1)) →RΩ(1)
quot(gen_0':s2_0(n4_0), gen_0':s2_0(+(1, n4_0)), gen_0':s2_0(1)) →IH
gen_0':s2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
quot(
0',
s(
y),
s(
z)) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
quot(
x,
s(
z),
s(
z)))
Types:
quot :: 0':s → 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
quot(gen_0':s2_0(n4_0), gen_0':s2_0(+(1, n4_0)), gen_0':s2_0(1)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(10) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
quot(gen_0':s2_0(n4_0), gen_0':s2_0(+(1, n4_0)), gen_0':s2_0(1)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
(11) BOUNDS(n^1, INF)
(12) Obligation:
Innermost TRS:
Rules:
quot(
0',
s(
y),
s(
z)) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
quot(
x,
s(
z),
s(
z)))
Types:
quot :: 0':s → 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
quot(gen_0':s2_0(n4_0), gen_0':s2_0(+(1, n4_0)), gen_0':s2_0(1)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
quot(gen_0':s2_0(n4_0), gen_0':s2_0(+(1, n4_0)), gen_0':s2_0(1)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
(14) BOUNDS(n^1, INF)